Source code for pyro.multigrid.examples.mg_test_simple

#!/usr/bin/env python3

"""

an example of using the multigrid class to solve Laplace's equation.  Here, we
solve::

   u_xx + u_yy = -2[(1-6x**2)y**2(1-y**2) + (1-6y**2)x**2(1-x**2)]
   u = 0 on the boundary

this is the example from page 64 of the book `A Multigrid Tutorial, 2nd Ed.`

The analytic solution is u(x,y) = (x**2 - x**4)(y**4 - y**2)

"""


import matplotlib.pyplot as plt
import numpy as np

import pyro.util.io_pyro as io
from pyro.multigrid import MG
from pyro.util import compare, msg


# the analytic solution
[docs] def true(x, y): return (x**2 - x**4)*(y**4 - y**2)
# the righthand side
[docs] def f(x, y): return -2.0*((1.0-6.0*x**2)*y**2*(1.0-y**2) + (1.0-6.0*y**2)*x**2*(1.0-x**2))
[docs] def test_poisson_dirichlet(N, store_bench=False, comp_bench=False, bench_dir="tests/", make_plot=False, verbose=1, rtol=1e-12): # test the multigrid solver nx = N ny = nx # create the multigrid object a = MG.CellCenterMG2d(nx, ny, xl_BC_type="dirichlet", yl_BC_type="dirichlet", xr_BC_type="dirichlet", yr_BC_type="dirichlet", verbose=verbose) # initialize the solution to 0 a.init_zeros() # initialize the RHS using the function f rhs = f(a.x2d, a.y2d) a.init_RHS(rhs) # solve to a relative tolerance of 1.e-11 a.solve(rtol=1.e-11) # alternately, we can just use smoothing by uncommenting the following # a.smooth(a.nlevels-1,50000) # get the solution v = a.get_solution() # compute the error from the analytic solution b = true(a.x2d, a.y2d) e = v - b print(" L2 error from true solution = %g\n rel. err from previous cycle = %g\n num. cycles = %d" % (e.norm(), a.relative_error, a.num_cycles)) # plot it if make_plot: plt.figure(num=1, figsize=(5.0, 5.0), dpi=100, facecolor='w') plt.imshow(np.transpose(v[a.ilo:a.ihi+1, a.jlo:a.jhi+1]), interpolation="nearest", origin="lower", extent=[a.xmin, a.xmax, a.ymin, a.ymax]) plt.xlabel("x") plt.ylabel("y") print("Saving figure to mg_test.png") plt.savefig("mg_test.png") # store the output for later comparison bench = "mg_poisson_dirichlet" my_data = a.get_solution_object() if store_bench: my_data.write(f"{bench_dir}/{bench}") # do we do a comparison? if comp_bench: compare_file = f"{bench_dir}/{bench}" msg.warning("comparing to: %s " % (compare_file)) bench_data = io.read(compare_file) result = compare.compare(my_data, bench_data, rtol) if result == 0: msg.success(f"results match benchmark to within relative tolerance of {rtol}\n") else: msg.warning("ERROR: " + compare.errors[result] + "\n") return result return None
if __name__ == "__main__": test_poisson_dirichlet(256, comp_bench=True, make_plot=True)