General Linear Elliptic Equation

General Linear Elliptic Equation#

The GeneralMG2d class implements support for a general elliptic equation of the form:

\[\alpha \phi + \nabla \cdot (\beta \nabla \phi) + \gamma \cdot \nabla \phi = f\]

with inhomogeneous boundary conditions.

It subclasses the CellCenterMG2d class, and the basic interface is the same

We will solve the above with

\begin{align} \alpha &= 10 \\ \beta &= xy + 1 \\ \gamma &= \hat{x} + \hat{y} \end{align}

and

\begin{align} f = &-\frac{\pi}{2}(x + 1)\sin\left( \frac{\pi y}{2}\right) \cos\left(\frac{\pi x}{2}\right ) \\ {} &-\frac{\pi}{2}(y + 1)\sin\left( \frac{\pi x}{2}\right) \cos\left(\frac{\pi y}{2}\right ) \\ {} &+ \left( \frac{-\pi^2 (xy+1)}{2} + 10\right ) \cos \left ( \frac{\pi x}{2} \right ) \cos\left ( \frac{\pi y}{2} \right ) \end{align}

on \([0, 1] \times [0,1]\) with boundary conditions:

\begin{align} \phi(x=0) &= \cos(\pi y/2) \\ \phi(x=1) &= 0 \\ \phi(y=0) &= \cos(\pi x/2) \\ \phi(y=1) &= 0 \end{align}

This has the exact solution:

\[\phi = \cos(\pi x/2) \cos(\pi y/2)\]
[1]:
import numpy as np
import matplotlib.pyplot as plt

Setting up the solver#

[2]:
import pyro.mesh.boundary as bnd
import pyro.mesh.patch as patch
import pyro.multigrid.general_MG as gMG

For reference, we’ll define a function providing the analytic solution

[3]:
def true(x,y):
    return np.cos(np.pi*x/2.0)*np.cos(np.pi*y/2.0)

Now the coefficents–note that since \(\gamma\) is a vector, we have a different function for each component

[4]:
def alpha(x,y):
    return 10.0*np.ones_like(x)

def beta(x,y):
    return x*y + 1.0

def gamma_x(x,y):
    return np.ones_like(x)

def gamma_y(x,y):
    return np.ones_like(x)

and the righthand side function

[5]:
def f(x,y):
    return -0.5*np.pi*(x + 1.0)*np.sin(np.pi*y/2.0)*np.cos(np.pi*x/2.0) - \
            0.5*np.pi*(y + 1.0)*np.sin(np.pi*x/2.0)*np.cos(np.pi*y/2.0) + \
            (-np.pi**2*(x*y+1.0)/2.0 + 10.0)*np.cos(np.pi*x/2.0)*np.cos(np.pi*y/2.0)

Our inhomogeneous boundary conditions require a function that can be evaluated on the boundary to give the value

[6]:
def xl_func(y):
    return np.cos(np.pi*y/2.0)

def yl_func(x):
    return np.cos(np.pi*x/2.0)

Now we can setup our grid object and the coefficients, which are stored as a CellCenter2d object. Note, the coefficients do not need to have the same boundary conditions as \(\phi\) (and for real problems, they may not). The one that matters the most is \(\beta\), since that will need to be averaged to the edges of the domain, so the boundary conditions on the coefficients are important.

Here we use Neumann boundary conditions

[7]:
nx = 128
ny = 128

g = patch.Grid2d(nx, ny, ng=1)
d = patch.CellCenterData2d(g)

bc_c = bnd.BC(xlb="neumann", xrb="neumann",
              ylb="neumann", yrb="neumann")

d.register_var("alpha", bc_c)
d.register_var("beta", bc_c)
d.register_var("gamma_x", bc_c)
d.register_var("gamma_y", bc_c)
d.create()

a = d.get_var("alpha")
a[:,:] = alpha(g.x2d, g.y2d)

b = d.get_var("beta")
b[:,:] = beta(g.x2d, g.y2d)

gx = d.get_var("gamma_x")
gx[:,:] = gamma_x(g.x2d, g.y2d)

gy = d.get_var("gamma_y")
gy[:,:] = gamma_y(g.x2d, g.y2d)

Now we can setup the multigrid object

[8]:
a = gMG.GeneralMG2d(nx, ny,
                    xl_BC_type="dirichlet", yl_BC_type="dirichlet",
                    xr_BC_type="dirichlet", yr_BC_type="dirichlet",
                    xl_BC=xl_func,
                    yl_BC=yl_func,
                    coeffs=d,
                    verbose=1, vis=0, true_function=true)
cc data: nx = 2, ny = 2, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 4, ny = 4, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 8, ny = 8, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 16, ny = 16, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 32, ny = 32, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 64, ny = 64, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

cc data: nx = 128, ny = 128, ng = 1
         nvars = 7
         variables:
               v: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               f: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
               r: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: dirichlet    +x: dirichlet    -y: dirichlet    +y: dirichlet
           alpha: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
            beta: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_x: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann
         gamma_y: min:    0.0000000000    max:    0.0000000000
                  BCs: -x: neumann      +x: neumann      -y: neumann      +y: neumann

just as before, we specify the righthand side and initialize the solution

[9]:
a.init_zeros()
a.init_RHS(f(a.x2d, a.y2d))
Source norm =  1.775181492337501

Solving the system#

[10]:
a.solve(rtol=1.e-10)
source norm =  1.775181492337501
<<< beginning V-cycle (cycle 1) >>>

  level =  6, nx =  128, residual change:     1.77518 →     188.933
  level =  5, nx =   64, residual change:     129.938 →     56.2871
  level =  4, nx =   32, residual change:     38.8869 →     18.7228
  level =  3, nx =   16, residual change:     12.9261 →     6.74186
  level =  2, nx =    8, residual change:     4.64648 →     2.06513
  level =  1, nx =    4, residual change:     1.37453 →   0.0224452
  bottom solve
  level =  1, nx =    4, residual change:   0.0312525 →   0.0312525
  level =  2, nx =    8, residual change:     2.80598 →     2.80598
  level =  3, nx =   16, residual change:      8.7724 →      8.7724
  level =  4, nx =   32, residual change:      19.591 →      19.591
  level =  5, nx =   64, residual change:     50.4641 →     50.4641
  level =  6, nx =  128, residual change:     160.213 →     160.213
cycle 1: relative err = 0.9999999999999981, residual err = 2.323786088373021

<<< beginning V-cycle (cycle 2) >>>

  level =  6, nx =  128, residual change:     4.12514 →     2.42473
  level =  5, nx =   64, residual change:     1.69154 →     1.04862
  level =  4, nx =   32, residual change:    0.728342 →    0.455482
  level =  3, nx =   16, residual change:    0.316533 →    0.221286
  level =  2, nx =    8, residual change:    0.153325 →   0.0747197
  level =  1, nx =    4, residual change:   0.0497494 → 0.000813357
  bottom solve
  level =  1, nx =    4, residual change:  0.00113252 →  0.00113252
  level =  2, nx =    8, residual change:    0.101526 →    0.101526
  level =  3, nx =   16, residual change:    0.298147 →    0.298147
  level =  4, nx =   32, residual change:    0.521885 →    0.521885
  level =  5, nx =   64, residual change:    0.991063 →    0.991063
  level =  6, nx =  128, residual change:     2.04419 →     2.04419
cycle 2: relative err = 0.036315310129800826, residual err = 0.03283823443993396

<<< beginning V-cycle (cycle 3) >>>

  level =  6, nx =  128, residual change:   0.0582938 →   0.0417201
  level =  5, nx =   64, residual change:   0.0292467 →   0.0233563
  level =  4, nx =   32, residual change:   0.0163063 →   0.0129066
  level =  3, nx =   16, residual change:  0.00901111 →  0.00731526
  level =  2, nx =    8, residual change:   0.0050815 →  0.00256253
  level =  1, nx =    4, residual change:  0.00170641 → 2.79124e-05
  bottom solve
  level =  1, nx =    4, residual change: 3.88653e-05 → 3.88653e-05
  level =  2, nx =    8, residual change:  0.00348191 →  0.00348191
  level =  3, nx =   16, residual change:    0.010065 →    0.010065
  level =  4, nx =   32, residual change:   0.0160323 →   0.0160323
  level =  5, nx =   64, residual change:   0.0243037 →   0.0243037
  level =  6, nx =  128, residual change:   0.0377753 →   0.0377753
cycle 3: relative err = 0.0012532978372415558, residual err = 0.0006216334987521017

<<< beginning V-cycle (cycle 4) >>>

  level =  6, nx =  128, residual change:  0.00110351 → 0.000889832
  level =  5, nx =   64, residual change:  0.00062574 →  0.00060774
  level =  4, nx =   32, residual change: 0.000426042 → 0.000397674
  level =  3, nx =   16, residual change: 0.000278462 → 0.000242683
  level =  2, nx =    8, residual change: 0.000168818 → 8.63435e-05
  level =  1, nx =    4, residual change: 5.75013e-05 → 9.40799e-07
  bottom solve
  level =  1, nx =    4, residual change: 1.30997e-06 → 1.30997e-06
  level =  2, nx =    8, residual change: 0.000117324 → 0.000117324
  level =  3, nx =   16, residual change: 0.000338509 → 0.000338509
  level =  4, nx =   32, residual change: 0.000524953 → 0.000524953
  level =  5, nx =   64, residual change: 0.000708087 → 0.000708087
  level =  6, nx =  128, residual change: 0.000918517 → 0.000918517
cycle 4: relative err = 4.257466296364851e-05, residual err = 1.4967652930826935e-05

<<< beginning V-cycle (cycle 5) >>>

  level =  6, nx =  128, residual change: 2.65703e-05 → 2.30982e-05
  level =  5, nx =   64, residual change: 1.62749e-05 → 1.79061e-05
  level =  4, nx =   32, residual change: 1.25859e-05 → 1.28807e-05
  level =  3, nx =   16, residual change: 9.03506e-06 →   8.103e-06
  level =  2, nx =    8, residual change:  5.6415e-06 → 2.90121e-06
  level =  1, nx =    4, residual change: 1.93217e-06 → 3.16168e-08
  bottom solve
  level =  1, nx =    4, residual change: 4.40233e-08 → 4.40233e-08
  level =  2, nx =    8, residual change: 3.94227e-06 → 3.94227e-06
  level =  3, nx =   16, residual change: 1.14059e-05 → 1.14059e-05
  level =  4, nx =   32, residual change:  1.7696e-05 →  1.7696e-05
  level =  5, nx =   64, residual change: 2.28172e-05 → 2.28172e-05
  level =  6, nx =  128, residual change: 2.72045e-05 → 2.72045e-05
cycle 5: relative err = 1.437223355768636e-06, residual err = 4.2910353907176844e-07

<<< beginning V-cycle (cycle 6) >>>

  level =  6, nx =  128, residual change: 7.61737e-07 → 6.88796e-07
  level =  5, nx =   64, residual change:  4.8583e-07 → 5.69884e-07
  level =  4, nx =   32, residual change: 4.01145e-07 → 4.28873e-07
  level =  3, nx =   16, residual change: 3.01132e-07 → 2.72291e-07
  level =  2, nx =    8, residual change: 1.89676e-07 → 9.77049e-08
  level =  1, nx =    4, residual change: 6.50717e-08 → 1.06486e-09
  bottom solve
  level =  1, nx =    4, residual change: 1.48271e-09 → 1.48271e-09
  level =  2, nx =    8, residual change: 1.32767e-07 → 1.32767e-07
  level =  3, nx =   16, residual change: 3.85631e-07 → 3.85631e-07
  level =  4, nx =   32, residual change: 6.03884e-07 → 6.03884e-07
  level =  5, nx =   64, residual change: 7.68242e-07 → 7.68242e-07
  level =  6, nx =  128, residual change: 8.86509e-07 → 8.86509e-07
cycle 6: relative err = 4.849259894834445e-08, residual err = 1.3530556515124825e-08

<<< beginning V-cycle (cycle 7) >>>

  level =  6, nx =  128, residual change: 2.40192e-08 → 2.21253e-08
  level =  5, nx =   64, residual change: 1.56138e-08 → 1.88696e-08
  level =  4, nx =   32, residual change: 1.32927e-08 → 1.44857e-08
  level =  3, nx =   16, residual change: 1.01772e-08 → 9.19808e-09
  level =  2, nx =    8, residual change: 6.40947e-09 → 3.30184e-09
  level =  1, nx =    4, residual change: 2.19906e-09 → 3.59875e-11
  bottom solve
  level =  1, nx =    4, residual change: 5.01092e-11 → 5.01092e-11
  level =  2, nx =    8, residual change: 4.48679e-09 → 4.48679e-09
  level =  3, nx =   16, residual change: 1.30812e-08 → 1.30812e-08
  level =  4, nx =   32, residual change:  2.0705e-08 →  2.0705e-08
  level =  5, nx =   64, residual change: 2.62808e-08 → 2.62808e-08
  level =  6, nx =  128, residual change: 2.99444e-08 → 2.99444e-08
cycle 7: relative err = 1.6392149576904378e-09, residual err = 4.458207725000789e-10

<<< beginning V-cycle (cycle 8) >>>

  level =  6, nx =  128, residual change: 7.91413e-10 → 7.35586e-10
  level =  5, nx =   64, residual change:  5.1922e-10 → 6.36466e-10
  level =  4, nx =   32, residual change:  4.4855e-10 → 4.92822e-10
  level =  3, nx =   16, residual change:  3.4637e-10 → 3.11941e-10
  level =  2, nx =    8, residual change: 2.17418e-10 → 1.11945e-10
  level =  1, nx =    4, residual change: 7.45572e-11 → 1.22015e-12
  bottom solve
  level =  1, nx =    4, residual change: 1.69894e-12 → 1.69894e-12
  level =  2, nx =    8, residual change: 1.52121e-10 → 1.52121e-10
  level =  3, nx =   16, residual change: 4.44914e-10 → 4.44914e-10
  level =  4, nx =   32, residual change: 7.10977e-10 → 7.10977e-10
  level =  5, nx =   64, residual change:   9.034e-10 →   9.034e-10
  level =  6, nx =  128, residual change:  1.0238e-09 →  1.0238e-09
cycle 8: relative err = 5.555097426033948e-11, residual err = 1.5072807373286882e-11

Checking the result#

We can compare to the true solution

[11]:
v = a.get_solution()
b = true(a.x2d, a.y2d)
e = v - b

The norm of the error is

[12]:
print(f"{e.norm():20.10g}")
     1.671934405e-05