References

[KRomano19]

Hendrik C. Kuhlmann and Francesco Romanò. The Lid-Driven Cavity, pages 233–309. Springer International Publishing, Cham, 2019. doi:10.1007/978-3-319-91494-7_8.

[SL58]

J. J. Stoker and R. Bruce Lindsay. Water waves. Physics Today, 11(8):28–30, 1958. URL: https://pubs.aip.org/physicstoday/article/11/8/28/927415/Water-Waves.

[WHZ99]

Chao Wu, Guofu Huang, and Yonghong Zheng. Theoretical solution of dam-break shock wave. Journal of Hydraulic Engineering, 125(11):1210–1215, 1999.

[Zal79]

Steven T Zalesak. Fully multidimensional flux-corrected transport algorithms for fluids. Journal of Computational Physics, 31(3):335 – 362, 1979. doi:https://doi.org/10.1016/0021-9991(79)90051-2.

[BellColellaGlaz89]

John B. Bell, Phillip Colella, and Harland M. Glaz. A Second Order Projection Method for the Incompressible Navier-Stokes Equations. Journal of Computational Physics, 85(2):257–283, December 1989. doi:10.1016/0021-9991(89)90151-4.

[Colella90]

P. Colella. Multidimensional upwind methods for hyperbolic conservation laws. Journal of Computational Physics, 87:171–200, March 1990. doi:10.1016/0021-9991(90)90233-Q.

[GhiaGhiaShin82]

U. Ghia, K. N. Ghia, and C. T. Shin. High-Re Solutions for Incompressible Flow Using the Navier-Stokes Equations and a Multigrid Method. Journal of Computational Physics, 48(3):387–411, December 1982. doi:10.1016/0021-9991(82)90058-4.

[MartinColella00]

Daniel F. Martin and Phillip Colella. A Cell-Centered Adaptive Projection Method for the Incompressible Euler Equations. Journal of Computational Physics, 163(2):271–312, September 2000. doi:10.1006/jcph.2000.6575.

[McCorquodaleColella11]

P. McCorquodale and P. Colella. A high-order finite-volume method for conservation laws on locally refined grids. Communication in Applied Mathematics and Computational Science, 6(1):1–25, 2011.

[Minion96]

Michael L. Minion. A Projection Method for Locally Refined Grids. Journal of Computational Physics, 127(1):158–178, August 1996. doi:10.1006/jcph.1996.0166.