pyro.incompressible.problems package#

Submodules#

pyro.incompressible.problems.converge module#

Initialize a smooth incompressible convergence test. Here, the velocities are initialized as

u(x,y)=12cos(2πx)sin(2πy)v(x,y)=1+2sin(2πx)cos(2πy)

and the exact solution at some later time t is then

u(x,y,t)=12cos(2π(xt))sin(2π(yt))v(x,y,t)=1+2sin(2π(xt))cos(2π(yt))p(x,y,t)=cos(4π(xt))cos(4π(yt))

The numerical solution can be compared to the exact solution to measure the convergence rate of the algorithm. These initial conditions come from Minion 1996.

pyro.incompressible.problems.converge.finalize()[source]#

print out any information to the user at the end of the run

pyro.incompressible.problems.converge.init_data(my_data, rp)[source]#

initialize the incompressible converge problem

pyro.incompressible.problems.shear module#

Initialize the doubly periodic shear layer (see, for example, Martin and Colella, 2000, JCP, 163, 271). This is run in a unit square domain, with periodic boundary conditions on all sides. Here, the initial velocity is:

u(x,y,t=0)={tanh(ρs(y1/4))if y1/2tanh(ρs(3/4y))if y>1/2
v(x,y,t=0)=δssin(2πx)
pyro.incompressible.problems.shear.finalize()[source]#

print out any information to the user at the end of the run

pyro.incompressible.problems.shear.init_data(my_data, rp)[source]#

initialize the incompressible shear problem