Source code for pyro.incompressible.simulation

import matplotlib.pyplot as plt
import numpy as np

import pyro.mesh.array_indexer as ai
import pyro.mesh.boundary as bnd
from pyro.burgers import Simulation as burgers_simulation
from pyro.incompressible import incomp_interface
from pyro.mesh import patch, reconstruction
from pyro.multigrid import MG
from pyro.particles import particles
from pyro.simulation_null import bc_setup, grid_setup


[docs] class Simulation(burgers_simulation):
[docs] def initialize(self, *, other_bc=False, aux_vars=()): """ Initialize the grid and variables for incompressible flow and set the initial conditions for the chosen problem. """ my_grid = grid_setup(self.rp, ng=4) # create the variables my_data = patch.CellCenterData2d(my_grid) if other_bc: self.define_other_bc() bc, bc_xodd, bc_yodd = bc_setup(self.rp) # velocities my_data.register_var("x-velocity", bc_xodd) my_data.register_var("y-velocity", bc_yodd) # phi -- used for the projections. Has neumann BC's if v is dirichlet # Assuming BC's are either all periodic or all dirichlet phi_bc = None if bc.xlb == "periodic": phi_bc = bc elif bc.xlb == "dirichlet": phi_bc = bnd.BC(xlb='neumann', xrb='neumann', ylb='neumann', yrb='neumann') my_data.register_var("phi-MAC", phi_bc) my_data.register_var("phi", phi_bc) my_data.register_var("gradp_x", phi_bc) my_data.register_var("gradp_y", phi_bc) for v in aux_vars: my_data.set_aux(keyword=v[0], value=v[1]) my_data.create() self.cc_data = my_data if self.rp.get_param("particles.do_particles") == 1: n_particles = self.rp.get_param("particles.n_particles") particle_generator = self.rp.get_param("particles.particle_generator") self.particles = particles.Particles(self.cc_data, bc, n_particles, particle_generator) self.in_preevolve = False # now set the initial conditions for the problem self.problem_func(self.cc_data, self.rp)
[docs] def preevolve(self): """ preevolve is called before we being the timestepping loop. For the incompressible solver, this does an initial projection on the velocity field and then goes through the full evolution to get the value of phi. The fluid state (u, v) is then reset to values before this evolve. """ self.in_preevolve = True myg = self.cc_data.grid u = self.cc_data.get_var("x-velocity") v = self.cc_data.get_var("y-velocity") self.cc_data.fill_BC("x-velocity") self.cc_data.fill_BC("y-velocity") # 1. do the initial projection. This makes sure that our original # velocity field satisfies div U = 0 # next create the multigrid object. We want Neumann BCs on phi # at solid walls and periodic on phi for periodic BCs mg = MG.CellCenterMG2d(myg.nx, myg.ny, xl_BC_type="periodic", xr_BC_type="periodic", yl_BC_type="periodic", yr_BC_type="periodic", xmin=myg.xmin, xmax=myg.xmax, ymin=myg.ymin, ymax=myg.ymax, verbose=0) # first compute divU divU = mg.soln_grid.scratch_array() divU.v()[:, :] = \ 0.5*(u.ip(1) - u.ip(-1))/myg.dx + 0.5*(v.jp(1) - v.jp(-1))/myg.dy # solve L phi = DU # initialize our guess to the solution, set the RHS to divU and # solve mg.init_zeros() mg.init_RHS(divU) mg.solve(rtol=1.e-10) # store the solution in our self.cc_data object -- include a single # ghostcell phi = self.cc_data.get_var("phi") phi[:, :] = mg.get_solution(grid=myg) # compute the cell-centered gradient of phi and update the # velocities gradp_x, gradp_y = mg.get_solution_gradient(grid=myg) u[:, :] -= gradp_x v[:, :] -= gradp_y # fill the ghostcells self.cc_data.fill_BC("x-velocity") self.cc_data.fill_BC("y-velocity") # 2. now get an approximation to gradp at n-1/2 by going through the # evolution. # store the current solution -- we'll restore it in a bit orig_data = patch.cell_center_data_clone(self.cc_data) # get the timestep self.method_compute_timestep() # evolve self.evolve() # update gradp_x and gradp_y in our main data object new_gp_x = self.cc_data.get_var("gradp_x") new_gp_y = self.cc_data.get_var("gradp_y") orig_gp_x = orig_data.get_var("gradp_x") orig_gp_y = orig_data.get_var("gradp_y") orig_gp_x[:, :] = new_gp_x[:, :] orig_gp_y[:, :] = new_gp_y[:, :] self.cc_data = orig_data if self.verbose > 0: print("done with the pre-evolution") self.in_preevolve = False
[docs] def evolve(self, other_update_velocity=False, other_source_term=False): """ Evolve the incompressible equations through one timestep. """ u = self.cc_data.get_var("x-velocity") v = self.cc_data.get_var("y-velocity") gradp_x = self.cc_data.get_var("gradp_x") gradp_y = self.cc_data.get_var("gradp_y") phi = self.cc_data.get_var("phi") myg = self.cc_data.grid if other_source_term: source_x, source_y = self.other_source_term() else: source_x, source_y = None, None # --------------------------------------------------------------------- # create the limited slopes of u and v (in both directions) # --------------------------------------------------------------------- limiter = self.rp.get_param("incompressible.limiter") ldelta_ux = reconstruction.limit(u, myg, 1, limiter) ldelta_vx = reconstruction.limit(v, myg, 1, limiter) ldelta_uy = reconstruction.limit(u, myg, 2, limiter) ldelta_vy = reconstruction.limit(v, myg, 2, limiter) # --------------------------------------------------------------------- # get the advective velocities # --------------------------------------------------------------------- """ the advective velocities are the normal velocity through each cell interface, and are defined on the cell edges, in a MAC type staggered form n+1/2 v i,j+1/2 +------+------+ | | n+1/2 | | n+1/2 u + U + u i-1/2,j | i,j | i+1/2,j | | +------+------+ n+1/2 v i,j-1/2 """ # this returns u on x-interfaces and v on y-interfaces. These # constitute the MAC grid if self.verbose > 0: print(" making MAC velocities") _um, _vm = incomp_interface.mac_vels(myg, self.dt, u, v, ldelta_ux, ldelta_vx, ldelta_uy, ldelta_vy, gradp_x, gradp_y, source_x, source_y) u_MAC = ai.ArrayIndexer(d=_um, grid=myg) v_MAC = ai.ArrayIndexer(d=_vm, grid=myg) # --------------------------------------------------------------------- # do a MAC projection to make the advective velocities divergence # free # --------------------------------------------------------------------- # we will solve L phi = D U^MAC, where phi is cell centered, and # U^MAC is the MAC-type staggered grid of the advective # velocities. if self.verbose > 0: print(" MAC projection") # create the multigrid object mg = MG.CellCenterMG2d(myg.nx, myg.ny, xl_BC_type=self.cc_data.BCs["phi"].xlb, xr_BC_type=self.cc_data.BCs["phi"].xrb, yl_BC_type=self.cc_data.BCs["phi"].ylb, yr_BC_type=self.cc_data.BCs["phi"].yrb, xmin=myg.xmin, xmax=myg.xmax, ymin=myg.ymin, ymax=myg.ymax, verbose=0) # first compute divU divU = mg.soln_grid.scratch_array() # MAC velocities are edge-centered. divU is cell-centered. divU.v()[:, :] = \ (u_MAC.ip(1) - u_MAC.v())/myg.dx + (v_MAC.jp(1) - v_MAC.v())/myg.dy # solve the Poisson problem mg.init_zeros() mg.init_RHS(divU) mg.solve(rtol=1.e-12) # update the normal velocities with the pressure gradient -- these # constitute our advective velocities phi_MAC = self.cc_data.get_var("phi-MAC") solution = mg.get_solution() phi_MAC.v(buf=1)[:, :] = solution.v(buf=1) # we need the MAC velocities on all edges of the computational domain b = (0, 1, 0, 0) u_MAC.v(buf=b)[:, :] -= (phi_MAC.v(buf=b) - phi_MAC.ip(-1, buf=b))/myg.dx b = (0, 0, 0, 1) v_MAC.v(buf=b)[:, :] -= (phi_MAC.v(buf=b) - phi_MAC.jp(-1, buf=b))/myg.dy # --------------------------------------------------------------------- # recompute the interface states, using the advective velocity # from above # --------------------------------------------------------------------- if self.verbose > 0: print(" making u, v edge states") _ux, _vx, _uy, _vy = \ incomp_interface.states(myg, self.dt, u, v, ldelta_ux, ldelta_vx, ldelta_uy, ldelta_vy, gradp_x, gradp_y, u_MAC, v_MAC, source_x, source_y) u_xint = ai.ArrayIndexer(d=_ux, grid=myg) v_xint = ai.ArrayIndexer(d=_vx, grid=myg) u_yint = ai.ArrayIndexer(d=_uy, grid=myg) v_yint = ai.ArrayIndexer(d=_vy, grid=myg) # --------------------------------------------------------------------- # update U to get the provisional velocity field # --------------------------------------------------------------------- proj_type = self.rp.get_param("incompressible.proj_type") if other_update_velocity: U_MAC = (u_MAC, v_MAC) U_INT = (u_xint, u_yint, v_xint, v_yint) self.do_other_update_velocity(U_MAC, U_INT) else: if self.verbose > 0: print(" doing provisional update of u, v") # compute (U.grad)U # we want u_MAC U_x + v_MAC U_y advect_x = myg.scratch_array() advect_y = myg.scratch_array() # u u_x + v u_y advect_x.v()[:, :] = \ 0.5*(u_MAC.v() + u_MAC.ip(1))*(u_xint.ip(1) - u_xint.v())/myg.dx + \ 0.5*(v_MAC.v() + v_MAC.jp(1))*(u_yint.jp(1) - u_yint.v())/myg.dy # u v_x + v v_y advect_y.v()[:, :] = \ 0.5*(u_MAC.v() + u_MAC.ip(1))*(v_xint.ip(1) - v_xint.v())/myg.dx + \ 0.5*(v_MAC.v() + v_MAC.jp(1))*(v_yint.jp(1) - v_yint.v())/myg.dy if proj_type == 1: u[:, :] -= (self.dt*advect_x[:, :] + self.dt*gradp_x[:, :]) v[:, :] -= (self.dt*advect_y[:, :] + self.dt*gradp_y[:, :]) elif proj_type == 2: u[:, :] -= self.dt*advect_x[:, :] v[:, :] -= self.dt*advect_y[:, :] self.cc_data.fill_BC("x-velocity") self.cc_data.fill_BC("y-velocity") # --------------------------------------------------------------------- # project the final velocity # --------------------------------------------------------------------- # now we solve L phi = D (U* /dt) if self.verbose > 0: print(" final projection") # create the multigrid object mg = MG.CellCenterMG2d(myg.nx, myg.ny, xl_BC_type=self.cc_data.BCs["phi"].xlb, xr_BC_type=self.cc_data.BCs["phi"].xrb, yl_BC_type=self.cc_data.BCs["phi"].ylb, yr_BC_type=self.cc_data.BCs["phi"].yrb, xmin=myg.xmin, xmax=myg.xmax, ymin=myg.ymin, ymax=myg.ymax, verbose=0) # first compute divU # u/v are cell-centered, divU is cell-centered divU.v()[:, :] = \ 0.5*(u.ip(1) - u.ip(-1))/myg.dx + 0.5*(v.jp(1) - v.jp(-1))/myg.dy mg.init_RHS(divU/self.dt) # use the old phi as our initial guess phiGuess = mg.soln_grid.scratch_array() phiGuess.v(buf=1)[:, :] = phi.v(buf=1) mg.init_solution(phiGuess) # solve mg.solve(rtol=1.e-12) # store the solution phi[:, :] = mg.get_solution(grid=myg) # compute the cell-centered gradient of p and update the velocities # this differs depending on what we projected. gradphi_x, gradphi_y = mg.get_solution_gradient(grid=myg) # u = u - grad_x phi dt u[:, :] -= self.dt*gradphi_x v[:, :] -= self.dt*gradphi_y # store gradp for the next step if proj_type == 1: gradp_x[:, :] += gradphi_x[:, :] gradp_y[:, :] += gradphi_y[:, :] elif proj_type == 2: gradp_x[:, :] = gradphi_x[:, :] gradp_y[:, :] = gradphi_y[:, :] self.cc_data.fill_BC("x-velocity") self.cc_data.fill_BC("y-velocity") if self.particles is not None: self.particles.update_particles(self.dt) # increment the time if not self.in_preevolve: self.cc_data.t += self.dt self.n += 1
[docs] def dovis(self): """ Do runtime visualization """ plt.clf() plt.rc("font", size=10) u = self.cc_data.get_var("x-velocity") v = self.cc_data.get_var("y-velocity") myg = self.cc_data.grid vort = myg.scratch_array() divU = myg.scratch_array() vort.v()[:, :] = \ 0.5*(v.ip(1) - v.ip(-1))/myg.dx - \ 0.5*(u.jp(1) - u.jp(-1))/myg.dy divU.v()[:, :] = \ 0.5*(u.ip(1) - u.ip(-1))/myg.dx + \ 0.5*(v.jp(1) - v.jp(-1))/myg.dy _, axes = plt.subplots(nrows=2, ncols=2, num=1) plt.subplots_adjust(hspace=0.25) fields = [u, v, vort, divU] field_names = ["u", "v", r"$\nabla \times U$", r"$\nabla \cdot U$"] for n in range(4): ax = axes.flat[n] f = fields[n] img = ax.imshow(np.transpose(f.v()), interpolation="nearest", origin="lower", extent=[myg.xmin, myg.xmax, myg.ymin, myg.ymax], cmap=self.cm) ax.set_xlabel("x") ax.set_ylabel("y") ax.set_title(field_names[n]) plt.colorbar(img, ax=ax) if self.particles is not None: ax = axes.flat[0] particle_positions = self.particles.get_positions() # dye particles colors = self.particles.get_init_positions()[:, 0] # plot particles ax.scatter(particle_positions[:, 0], particle_positions[:, 1], s=5, c=colors, alpha=0.8, cmap="Greys") ax.set_xlim([myg.xmin, myg.xmax]) ax.set_ylim([myg.ymin, myg.ymax]) plt.figtext(0.05, 0.0125, f"t = {self.cc_data.t:10.5f}") plt.pause(0.001) plt.draw()
[docs] def define_other_bc(self): """ Used to set up user-defined BC's (see e.g. incompressible_viscous) """
[docs] def other_source_term(self): """ Add source terms (other than gradp) for getting interface state values, in the x and y directions """ return None, None
[docs] def do_other_update_velocity(self, U_MAC, U_INT): """ Change the method for updating the velocity from the projected velocity and interface states (see e.g. incompressible_viscous) """