Source code for pyro.compressible_sr.problems.rt
import sys
import numpy as np
from pyro.compressible_sr import eos
from pyro.mesh import patch
from pyro.util import msg
[docs]
def init_data(my_data, rp):
""" initialize the rt problem """
msg.bold("initializing the rt problem...")
# make sure that we are passed a valid patch object
if not isinstance(my_data, patch.CellCenterData2d):
print("ERROR: patch invalid in rt.py")
print(my_data.__class__)
sys.exit()
# get the density, momenta, and energy as separate variables
dens = my_data.get_var("density")
xmom = my_data.get_var("x-momentum")
ymom = my_data.get_var("y-momentum")
ener = my_data.get_var("energy")
gamma = rp.get_param("eos.gamma")
grav = rp.get_param("compressible.grav")
dens1 = rp.get_param("rt.dens1")
dens2 = rp.get_param("rt.dens2")
p0 = rp.get_param("rt.p0")
amp = rp.get_param("rt.amp")
sigma = rp.get_param("rt.sigma")
# initialize the components, remember, that ener here is
# rho*eint + 0.5*rho*v**2, where eint is the specific
# internal energy (erg/g)
xmom[:, :] = 0.0
ymom[:, :] = 0.0
dens[:, :] = 0.0
# set the density to be stratified in the y-direction
myg = my_data.grid
ycenter = 0.5*(myg.ymin + myg.ymax)
p = myg.scratch_array()
p[:, :] = p0
dens[:, :] = dens1
for j in range(myg.jlo, myg.jhi+1):
if myg.y[j] < ycenter:
dens[:, j] = dens1
p[:, j] = p0 + dens1*grav*myg.y[j]
else:
dens[:, j] = dens2
p[:, j] = p0 + dens1*grav*ycenter + dens2*grav*(myg.y[j] - ycenter)
ymom[:, :] = amp*np.cos(2.0*np.pi*myg.x2d/(myg.xmax-myg.xmin))*np.exp(-(myg.y2d-ycenter)**2/sigma**2)
rhoh = eos.rhoh_from_rho_p(gamma, dens, p)
u = xmom
v = ymom
W = 1./np.sqrt(1-u**2-v**2)
dens[:, :] *= W
xmom[:, :] *= rhoh[:, :]*W**2
ymom[:, :] *= rhoh[:, :]*W**2
ener[:, :] = rhoh[:, :]*W**2 - p - dens[:, :]
# set the energy (P = cs2*dens)
# ener[:, :] = p[:, :]/(gamma - 1.0) + \
# 0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :]
[docs]
def finalize():
""" print out any information to the user at the end of the run """