Source code for pyro.compressible_sr.problems.bubble
import sys
import numpy as np
from pyro.compressible_sr import eos
from pyro.mesh import patch
from pyro.util import msg
[docs]
def init_data(my_data, rp):
""" initialize the bubble problem """
msg.bold("initializing the bubble problem...")
# make sure that we are passed a valid patch object
if not isinstance(my_data, patch.CellCenterData2d):
print("ERROR: patch invalid in bubble.py")
print(my_data.__class__)
sys.exit()
# get the density, momenta, and energy as separate variables
dens = my_data.get_var("density")
xmom = my_data.get_var("x-momentum")
ymom = my_data.get_var("y-momentum")
ener = my_data.get_var("energy")
gamma = rp.get_param("eos.gamma")
grav = rp.get_param("compressible.grav")
scale_height = rp.get_param("bubble.scale_height")
dens_base = rp.get_param("bubble.dens_base")
dens_cutoff = rp.get_param("bubble.dens_cutoff")
x_pert = rp.get_param("bubble.x_pert")
y_pert = rp.get_param("bubble.y_pert")
r_pert = rp.get_param("bubble.r_pert")
pert_amplitude_factor = rp.get_param("bubble.pert_amplitude_factor")
# initialize the components, remember, that ener here is
# rho*eint + 0.5*rho*v**2, where eint is the specific
# internal energy (erg/g)
xmom[:, :] = 0.0
ymom[:, :] = 0.0
dens[:, :] = dens_cutoff
# set the density to be stratified in the y-direction
myg = my_data.grid
p = myg.scratch_array()
cs2 = scale_height*abs(grav)
for j in range(myg.jlo, myg.jhi+1):
dens[:, j] = max(dens_base*np.exp(-myg.y[j]/scale_height),
dens_cutoff)
if j == myg.jlo:
p[:, j] = dens[:, j]*cs2
else:
p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav
# set the energy (P = cs2*dens)
ener[:, :] = p[:, :]/(gamma - 1.0) + \
0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :]
r = np.sqrt((myg.x2d - x_pert)**2 + (myg.y2d - y_pert)**2)
idx = r <= r_pert
# boost the specific internal energy, keeping the pressure
# constant, by dropping the density
eint = (ener[idx] - 0.5*(xmom[idx]**2 - ymom[idx]**2)/dens[idx])/dens[idx]
pres = dens[idx]*eint*(gamma - 1.0)
eint = eint*pert_amplitude_factor
dens[idx] = pres/(eint*(gamma - 1.0))
ener[idx] = dens[idx]*eint + 0.5*(xmom[idx]**2 + ymom[idx]**2)/dens[idx]
# p[idx] = pres
rhoh = eos.rhoh_from_rho_p(gamma, dens, p)
W = 1 / (np.sqrt(1-(xmom**2-ymom**2)/dens))
dens[:, :] *= W
xmom[:, :] *= rhoh[:, :]/dens*W**2
ymom[:, :] *= rhoh[:, :]/dens*W**2
# HACK: didn't work but W = 1 so shall cheat
ener[:, :] = rhoh[:, :]*W**2 - p - dens[:, :]
# ener[:, :] = p / (gamma-1)
# print(ener[:,myg.jlo:myg.jhi])#*W[:,myg.jlo:myg.jhi]**2)
# exit()
[docs]
def finalize():
""" print out any information to the user at the end of the run """