Source code for pyro.compressible_rk.problems.plume
"""A heat source at a point creates a plume that buoynantly rises in
an adiabatically stratified atmosphere."""
import numpy as np
from pyro.util import msg
DEFAULT_INPUTS = "inputs.plume"
PROBLEM_PARAMS = {"plume.dens_base": 10.0, # density at the base of the atmosphere
"plume.scale_height": 4.0, # scale height of the isothermal atmosphere
"plume.x_pert": 2.0,
"plume.y_pert": 2.0,
"plume.r_pert": 0.25,
"plume.e_rate": 0.1,
"plume.dens_cutoff": 0.01}
[docs]
def init_data(my_data, rp):
""" initialize the bubble problem """
if rp.get_param("driver.verbose"):
msg.bold("initializing the bubble problem...")
# get the density, momenta, and energy as separate variables
dens = my_data.get_var("density")
xmom = my_data.get_var("x-momentum")
ymom = my_data.get_var("y-momentum")
ener = my_data.get_var("energy")
gamma = rp.get_param("eos.gamma")
grav = rp.get_param("compressible.grav")
scale_height = rp.get_param("plume.scale_height")
dens_base = rp.get_param("plume.dens_base")
dens_cutoff = rp.get_param("plume.dens_cutoff")
# initialize the components, remember, that ener here is
# rho*eint + 0.5*rho*v**2, where eint is the specific
# internal energy (erg/g)
xmom[:, :] = 0.0
ymom[:, :] = 0.0
dens[:, :] = dens_cutoff
# set the density to be stratified in the y-direction
myg = my_data.grid
p = myg.scratch_array()
pres_base = scale_height*dens_base*abs(grav)
for j in range(myg.jlo, myg.jhi+1):
profile = 1.0 - (gamma-1.0)/gamma * myg.y[j]/scale_height
if profile > 0.0:
dens[:, j] = max(dens_base*(profile)**(1.0/(gamma-1.0)),
dens_cutoff)
else:
dens[:, j] = dens_cutoff
if j == myg.jlo:
p[:, j] = pres_base
else:
p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav
# set the energy (P = cs2*dens)
ener[:, :] = p[:, :]/(gamma - 1.0) + \
0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :]
[docs]
def source_terms(myg, U, ivars, rp):
"""source terms to be added to the evolution"""
S = myg.scratch_array(nvar=ivars.nvar)
x_pert = rp.get_param("plume.x_pert")
y_pert = rp.get_param("plume.y_pert")
dist = np.sqrt((myg.x2d - x_pert)**2 +
(myg.y2d - y_pert)**2)
e_rate = rp.get_param("plume.e_rate")
r_pert = rp.get_param("plume.r_pert")
S[:, :, ivars.iener] = U[:, :, ivars.idens] * e_rate * np.exp(-(dist / r_pert)**2)
return S
[docs]
def finalize():
""" print out any information to the user at the end of the run """