Source code for pyro.compressible_fv4.problems.rt

"""A single-mode Rayleigh-Taylor instability."""

import numpy as np

from pyro.util import msg

DEFAULT_INPUTS = "inputs.rt"

PROBLEM_PARAMS = {"rt.dens1": 1.0,
                  "rt.dens2": 2.0,
                  "rt.amp": 1.0,
                  "rt.sigma": 0.1,
                  "rt.p0": 10.0}


[docs] def init_data(my_data, rp): """ initialize the rt problem """ if rp.get_param("driver.verbose"): msg.bold("initializing the rt problem...") # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") gamma = rp.get_param("eos.gamma") grav = rp.get_param("compressible.grav") dens1 = rp.get_param("rt.dens1") dens2 = rp.get_param("rt.dens2") p0 = rp.get_param("rt.p0") amp = rp.get_param("rt.amp") sigma = rp.get_param("rt.sigma") # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) xmom[:, :] = 0.0 ymom[:, :] = 0.0 dens[:, :] = 0.0 # set the density to be stratified in the y-direction myg = my_data.grid ycenter = 0.5*(myg.ymin + myg.ymax) p = myg.scratch_array() j = myg.jlo while j <= myg.jhi: if myg.y[j] < ycenter: dens[:, j] = dens1 p[:, j] = p0 + dens1*grav*myg.y[j] else: dens[:, j] = dens2 p[:, j] = p0 + dens1*grav*ycenter + dens2*grav*(myg.y[j] - ycenter) j += 1 L = myg.xmax-myg.xmin ymom[:, :] = amp * 0.5 * (np.cos(2.0*np.pi*myg.x2d/L) + np.cos(2.0*np.pi*(L - myg.x2d)/L)) * np.exp(-(myg.y2d-ycenter)**2/sigma**2) ymom *= dens # set the energy (P = cs2*dens) ener[:, :] = p[:, :]/(gamma - 1.0) + \ 0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :]
[docs] def finalize(): """ print out any information to the user at the end of the run """