Source code for pyro.compressible_fv4.problems.convection

"""A heat source in a layer at some height above the bottom will drive
convection in an adiabatically stratified atmosphere."""

import numpy as np

from pyro.util import msg

DEFAULT_INPUTS = "inputs.convection"

PROBLEM_PARAMS = {"convection.dens_base": 10.0,  # density at the base of the atmosphere
                  "convection.scale_height": 4.0,  # scale height of the isothermal atmosphere
                  "convection.y_height": 2.0,
                  "convection.thickness": 0.25,
                  "convection.e_rate": 0.1,
                  "convection.dens_cutoff": 0.01}


[docs] def init_data(my_data, rp): """ initialize the bubble problem """ if rp.get_param("driver.verbose"): msg.bold("initializing the bubble problem...") # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") gamma = rp.get_param("eos.gamma") grav = rp.get_param("compressible.grav") scale_height = rp.get_param("convection.scale_height") dens_base = rp.get_param("convection.dens_base") dens_cutoff = rp.get_param("convection.dens_cutoff") # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) xmom[:, :] = 0.0 ymom[:, :] = 0.0 dens[:, :] = dens_cutoff # create a seeded random number generator rng = np.random.default_rng(12345) # set the density to be stratified in the y-direction myg = my_data.grid p = myg.scratch_array() pres_base = scale_height*dens_base*abs(grav) for j in range(myg.jlo, myg.jhi+1): profile = 1.0 - (gamma-1.0)/gamma * myg.y[j]/scale_height if profile > 0.0: dens[:, j] = max(dens_base*(profile)**(1.0/(gamma-1.0)), dens_cutoff) else: dens[:, j] = dens_cutoff if j == myg.jlo: p[:, j] = pres_base elif dens[0, j] <= dens_cutoff + 1.e-30: p[:, j] = p[:, j-1] else: #p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav p[:, j] = pres_base * (dens[:, j] / dens_base)**gamma # set the ambient conditions my_data.set_aux("ambient_rho", dens_cutoff) my_data.set_aux("ambient_u", 0.0) my_data.set_aux("ambient_v", 0.0) my_data.set_aux("ambient_p", p.v().min()) # set the energy (P = cs2*dens) -- assuming zero velocity ener[:, :] = p[:, :]/(gamma - 1.0) # pairs of random numbers between [-1, 1] vel_pert = 2.0 * rng.random(size=(myg.qx, myg.qy, 2)) - 1 cs = np.sqrt(gamma * p / dens) # make vel_pert have M < 0.05 vel_pert[:, :, 0] *= 0.05 * cs vel_pert[:, :, 1] *= 0.05 * cs idx = dens > 2 * dens_cutoff xmom[idx] = dens[idx] * vel_pert[idx, 0] ymom[idx] = dens[idx] * vel_pert[idx, 1] ener[:, :] += 0.5 * (xmom[:, :]**2 + ymom[:, :]**2) / dens[:, :]
[docs] def source_terms(myg, U, ivars, rp): """source terms to be added to the evolution""" S = myg.scratch_array(nvar=ivars.nvar) y_height = rp.get_param("convection.y_height") dist = np.abs(myg.y2d - y_height) e_rate = rp.get_param("convection.e_rate") thick = rp.get_param("convection.thickness") S[:, :, ivars.iener] = U[:, :, ivars.idens] * e_rate * np.exp(-(dist / thick)**2) return S
[docs] def finalize(): """ print out any information to the user at the end of the run """