Source code for pyro.compressible_fv4.problems.bubble

"""A buoyant perturbation (bubble) is placed in an isothermal
hydrostatic atmosphere (plane-parallel).  It will rise and deform (due
to shear)"""

import numpy as np

from pyro.util import msg

DEFAULT_INPUTS = "inputs.bubble"

PROBLEM_PARAMS = {"bubble.dens_base": 10.0,  # density at the base of the atmosphere
                  "bubble.scale_height": 2.0,  # scale height of the isothermal atmosphere
                  "bubble.x_pert": 2.0,
                  "bubble.y_pert": 2.0,
                  "bubble.r_pert": 0.25,
                  "bubble.pert_amplitude_factor": 5.0,
                  "bubble.dens_cutoff": 0.01}


[docs] def init_data(my_data, rp): """ initialize the bubble problem """ if rp.get_param("driver.verbose"): msg.bold("initializing the bubble problem...") # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") gamma = rp.get_param("eos.gamma") grav = rp.get_param("compressible.grav") scale_height = rp.get_param("bubble.scale_height") dens_base = rp.get_param("bubble.dens_base") dens_cutoff = rp.get_param("bubble.dens_cutoff") x_pert = rp.get_param("bubble.x_pert") y_pert = rp.get_param("bubble.y_pert") r_pert = rp.get_param("bubble.r_pert") pert_amplitude_factor = rp.get_param("bubble.pert_amplitude_factor") # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) xmom[:, :] = 0.0 ymom[:, :] = 0.0 dens[:, :] = dens_cutoff # set the density to be stratified in the y-direction myg = my_data.grid p = myg.scratch_array() cs2 = scale_height*abs(grav) for j in range(myg.jlo, myg.jhi+1): dens[:, j] = max(dens_base*np.exp(-myg.y[j]/scale_height), dens_cutoff) if j == myg.jlo: p[:, j] = dens[:, j]*cs2 else: p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav # set the energy (P = cs2*dens) ener[:, :] = p[:, :]/(gamma - 1.0) + \ 0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :] r = np.sqrt((myg.x2d - x_pert)**2 + (myg.y2d - y_pert)**2) idx = r <= r_pert # boost the specific internal energy, keeping the pressure # constant, by dropping the density eint = (ener[idx] - 0.5*(xmom[idx]**2 - ymom[idx]**2)/dens[idx])/dens[idx] pres = dens[idx]*eint*(gamma - 1.0) eint = eint*pert_amplitude_factor dens[idx] = pres/(eint*(gamma - 1.0)) ener[idx] = dens[idx]*eint + 0.5*(xmom[idx]**2 + ymom[idx]**2)/dens[idx]
[docs] def finalize(): """ print out any information to the user at the end of the run """