Source code for pyro.compressible_fv4.problems.bubble
"""A buoyant perturbation (bubble) is placed in an isothermal
hydrostatic atmosphere (plane-parallel). It will rise and deform (due
to shear)"""
import numpy as np
from pyro.util import msg
DEFAULT_INPUTS = "inputs.bubble"
PROBLEM_PARAMS = {"bubble.dens_base": 10.0, # density at the base of the atmosphere
"bubble.scale_height": 2.0, # scale height of the isothermal atmosphere
"bubble.x_pert": 2.0,
"bubble.y_pert": 2.0,
"bubble.r_pert": 0.25,
"bubble.pert_amplitude_factor": 5.0,
"bubble.dens_cutoff": 0.01}
[docs]
def init_data(my_data, rp):
""" initialize the bubble problem """
if rp.get_param("driver.verbose"):
msg.bold("initializing the bubble problem...")
# get the density, momenta, and energy as separate variables
dens = my_data.get_var("density")
xmom = my_data.get_var("x-momentum")
ymom = my_data.get_var("y-momentum")
ener = my_data.get_var("energy")
gamma = rp.get_param("eos.gamma")
grav = rp.get_param("compressible.grav")
scale_height = rp.get_param("bubble.scale_height")
dens_base = rp.get_param("bubble.dens_base")
dens_cutoff = rp.get_param("bubble.dens_cutoff")
x_pert = rp.get_param("bubble.x_pert")
y_pert = rp.get_param("bubble.y_pert")
r_pert = rp.get_param("bubble.r_pert")
pert_amplitude_factor = rp.get_param("bubble.pert_amplitude_factor")
# initialize the components, remember, that ener here is
# rho*eint + 0.5*rho*v**2, where eint is the specific
# internal energy (erg/g)
xmom[:, :] = 0.0
ymom[:, :] = 0.0
dens[:, :] = dens_cutoff
# set the density to be stratified in the y-direction
myg = my_data.grid
p = myg.scratch_array()
cs2 = scale_height*abs(grav)
for j in range(myg.jlo, myg.jhi+1):
dens[:, j] = max(dens_base*np.exp(-myg.y[j]/scale_height),
dens_cutoff)
if j == myg.jlo:
p[:, j] = dens[:, j]*cs2
else:
p[:, j] = p[:, j-1] + 0.5*myg.dy*(dens[:, j] + dens[:, j-1])*grav
# set the energy (P = cs2*dens)
ener[:, :] = p[:, :]/(gamma - 1.0) + \
0.5*(xmom[:, :]**2 + ymom[:, :]**2)/dens[:, :]
r = np.sqrt((myg.x2d - x_pert)**2 + (myg.y2d - y_pert)**2)
idx = r <= r_pert
# boost the specific internal energy, keeping the pressure
# constant, by dropping the density
eint = (ener[idx] - 0.5*(xmom[idx]**2 - ymom[idx]**2)/dens[idx])/dens[idx]
pres = dens[idx]*eint*(gamma - 1.0)
eint = eint*pert_amplitude_factor
dens[idx] = pres/(eint*(gamma - 1.0))
ener[idx] = dens[idx]*eint + 0.5*(xmom[idx]**2 + ymom[idx]**2)/dens[idx]
[docs]
def finalize():
""" print out any information to the user at the end of the run """