Source code for pyro.compressible.simulation

import matplotlib.pyplot as plt
import numpy as np

import pyro.compressible.unsplit_fluxes as flx
import pyro.mesh.boundary as bnd
from pyro.compressible import BC, derives, eos, riemann
from pyro.particles import particles
from pyro.simulation_null import NullSimulation, bc_setup, grid_setup
from pyro.util import msg, plot_tools


[docs] class Variables: """ a container class for easy access to the different compressible variable by an integer key """ def __init__(self, myd): self.nvar = len(myd.names) # conserved variables -- we set these when we initialize for # they match the CellCenterData2d object self.idens = myd.names.index("density") self.ixmom = myd.names.index("x-momentum") self.iymom = myd.names.index("y-momentum") self.iener = myd.names.index("energy") # if there are any additional variable, we treat them as # passively advected scalars self.naux = self.nvar - 4 if self.naux > 0: self.irhox = 4 else: self.irhox = -1 # primitive variables self.nq = 4 + self.naux self.irho = 0 self.iu = 1 self.iv = 2 self.ip = 3 if self.naux > 0: self.ix = 4 # advected scalar else: self.ix = -1
[docs] def cons_to_prim(U, gamma, ivars, myg): """ convert an input vector of conserved variables to primitive variables """ q = myg.scratch_array(nvar=ivars.nq) q[:, :, ivars.irho] = U[:, :, ivars.idens] q[:, :, ivars.iu] = np.divide(U[:, :, ivars.ixmom], U[:, :, ivars.idens], out=np.zeros_like(U[:, :, ivars.ixmom]), where=(U[:, :, ivars.idens] != 0.0)) q[:, :, ivars.iv] = np.divide(U[:, :, ivars.iymom], U[:, :, ivars.idens], out=np.zeros_like(U[:, :, ivars.iymom]), where=(U[:, :, ivars.idens] != 0.0)) e = np.divide(U[:, :, ivars.iener] - 0.5 * q[:, :, ivars.irho] * (q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2), q[:, :, ivars.irho], out=np.zeros_like(U[:, :, ivars.iener]), where=(U[:, :, ivars.idens] != 0.0)) q[:, :, ivars.ip] = eos.pres(gamma, q[:, :, ivars.irho], e) if ivars.naux > 0: for nq, nu in zip(range(ivars.ix, ivars.ix+ivars.naux), range(ivars.irhox, ivars.irhox+ivars.naux)): q[:, :, nq] = U[:, :, nu]/q[:, :, ivars.irho] return q
[docs] def prim_to_cons(q, gamma, ivars, myg): """ convert an input vector of primitive variables to conserved variables """ U = myg.scratch_array(nvar=ivars.nvar) U[:, :, ivars.idens] = q[:, :, ivars.irho] U[:, :, ivars.ixmom] = q[:, :, ivars.iu]*U[:, :, ivars.idens] U[:, :, ivars.iymom] = q[:, :, ivars.iv]*U[:, :, ivars.idens] rhoe = eos.rhoe(gamma, q[:, :, ivars.ip]) U[:, :, ivars.iener] = rhoe + 0.5*q[:, :, ivars.irho]*(q[:, :, ivars.iu]**2 + q[:, :, ivars.iv]**2) if ivars.naux > 0: for nq, nu in zip(range(ivars.ix, ivars.ix+ivars.naux), range(ivars.irhox, ivars.irhox+ivars.naux)): U[:, :, nu] = q[:, :, nq]*q[:, :, ivars.irho] return U
[docs] def get_external_sources(t, dt, U, ivars, rp, myg, *, U_old=None, problem_source=None): """compute the external sources, including gravity""" _ = t # maybe unused S = myg.scratch_array(nvar=ivars.nvar) grav = rp.get_param("compressible.grav") if U_old is None: # we are just computing the sources from the current state U if myg.coord_type == 1: # gravity points in the radial direction for spherical S[:, :, ivars.ixmom] = U[:, :, ivars.idens] * grav S[:, :, ivars.iener] = U[:, :, ivars.ixmom] * grav S[:, :, ivars.ixmom] += U[:, :, ivars.iymom]**2 / (U[:, :, ivars.idens] * myg.x2d) S[:, :, ivars.iymom] += -U[:, :, ivars.ixmom] * U[:, :, ivars.iymom] / U[:, :, ivars.idens] else: # gravity points in the vertical (y) direction for Cartesian S[:, :, ivars.iymom] = U[:, :, ivars.idens] * grav S[:, :, ivars.iener] = U[:, :, ivars.iymom] * grav else: # we want to compute gravity using the time-updated momentum # we assume that U is an approximation to U^{n+1}, which includes # a full dt * S_old if myg.coord_type == 1: S[:, :, ivars.ixmom] = U[:, :, ivars.idens] * grav S_old_xmom = U_old[:, :, ivars.idens] * grav # we want the corrected xmom that has a time-centered source xmom_new = U[:, :, ivars.ixmom] + 0.5 * dt * (S[:, :, ivars.ixmom] - S_old_xmom) S[:, :, ivars.iener] = xmom_new * grav S[:, :, ivars.ixmom] += U[:, :, ivars.iymom]**2 / (U[:, :, ivars.idens] * myg.x2d) S[:, :, ivars.iymom] += -U[:, :, ivars.ixmom] * U[:, :, ivars.iymom] / U[:, :, ivars.idens] else: S[:, :, ivars.iymom] = U[:, :, ivars.idens] * grav S_old_ymom = U_old[:, :, ivars.idens] * grav # we want the corrected ymom that has a time-centered source ymom_new = U[:, :, ivars.iymom] + 0.5 * dt * (S[:, :, ivars.iymom] - S_old_ymom) S[:, :, ivars.iener] = ymom_new * grav # now add the heating if problem_source: S_heating = problem_source(myg, U, ivars, rp) S[...] += S_heating return S
[docs] class Simulation(NullSimulation): """The main simulation class for the corner transport upwind compressible hydrodynamics solver """
[docs] def initialize(self, *, extra_vars=None, ng=4): """ Initialize the grid and variables for compressible flow and set the initial conditions for the chosen problem. """ my_grid = grid_setup(self.rp, ng=ng) my_data = self.data_class(my_grid) # Make sure we use CGF for riemann solver when we do SphericalPolar try: riemann_method = self.rp.get_param("compressible.riemann") except KeyError: msg.warning("ERROR: Riemann Solver is not set.") if my_grid.coord_type == 1 and riemann_method == "HLLC": msg.fail("ERROR: HLLC Riemann Solver is not supported " + "with SphericalPolar Geometry") # define solver specific boundary condition routines bnd.define_bc("hse", BC.user, is_solid=False) bnd.define_bc("ambient", BC.user, is_solid=False) bnd.define_bc("ramp", BC.user, is_solid=False) # for double mach reflection problem bc, bc_xodd, bc_yodd = bc_setup(self.rp) # are we dealing with solid boundaries? we'll use these for # the Riemann solver self.solid = bnd.bc_is_solid(bc) # density and energy my_data.register_var("density", bc) my_data.register_var("energy", bc) my_data.register_var("x-momentum", bc_xodd) my_data.register_var("y-momentum", bc_yodd) # any extras? if extra_vars is not None: for v in extra_vars: my_data.register_var(v, bc) # store the EOS gamma as an auxiliary quantity so we can have a # self-contained object stored in output files to make plots. # store grav because we'll need that in some BCs my_data.set_aux("gamma", self.rp.get_param("eos.gamma")) my_data.set_aux("grav", self.rp.get_param("compressible.grav")) my_data.create() self.cc_data = my_data if self.rp.get_param("particles.do_particles") == 1: self.particles = particles.Particles(self.cc_data, bc, self.rp) # some auxiliary data that we'll need to fill GC in, but isn't # really part of the main solution aux_data = self.data_class(my_grid) aux_data.register_var("dens_src", bc) aux_data.register_var("xmom_src", bc_xodd) aux_data.register_var("ymom_src", bc_yodd) aux_data.register_var("E_src", bc) aux_data.create() self.aux_data = aux_data self.ivars = Variables(my_data) # derived variables self.cc_data.add_derived(derives.derive_primitives) # initial conditions for the problem self.problem_func(self.cc_data, self.rp) if self.verbose > 0: print(my_data)
[docs] def method_compute_timestep(self): """ The timestep function computes the advective timestep (CFL) constraint. The CFL constraint says that information cannot propagate further than one zone per timestep. We use the driver.cfl parameter to control what fraction of the CFL step we actually take. """ cfl = self.rp.get_param("driver.cfl") # get the variables we need u, v, cs = self.cc_data.get_var(["velocity", "soundspeed"]) grid = self.cc_data.grid # the timestep is min(dx/(|u| + cs), dy/(|v| + cs)) xtmp = grid.Lx / (abs(u) + cs) ytmp = grid.Ly / (abs(v) + cs) self.dt = cfl*float(min(xtmp.min(), ytmp.min()))
[docs] def evolve(self): """ Evolve the equations of compressible hydrodynamics through a timestep dt. """ tm_evolve = self.tc.timer("evolve") tm_evolve.begin() dens = self.cc_data.get_var("density") xmom = self.cc_data.get_var("x-momentum") ymom = self.cc_data.get_var("y-momentum") ener = self.cc_data.get_var("energy") gamma = self.rp.get_param("eos.gamma") myg = self.cc_data.grid # First get conserved states normal to the x and y interface U_xl, U_xr, U_yl, U_yr = flx.interface_states(self.cc_data, self.rp, self.ivars, self.tc, self.dt) # Apply source terms to them. # This includes external (gravity), geometric and pressure terms for SphericalPolar # Only gravitional source for Cartesian2d U_xl, U_xr, U_yl, U_yr = flx.apply_source_terms(U_xl, U_xr, U_yl, U_yr, self.cc_data, self.aux_data, self.rp, self.ivars, self.tc, self.dt, problem_source=self.problem_source) # Apply transverse corrections. U_xl, U_xr, U_yl, U_yr = flx.apply_transverse_flux(U_xl, U_xr, U_yl, U_yr, self.cc_data, self.rp, self.ivars, self.solid, self.tc, self.dt) # Get the actual interface conserved state after using Riemann Solver # Then construct the corresponding fluxes using the conserved states if myg.coord_type == 1: # We need pressure from interface state for conservative update for # SphericalPolar geometry. So we need interface conserved states. F_x, U_x = riemann.riemann_flux(1, U_xl, U_xr, self.cc_data, self.rp, self.ivars, self.solid.xl, self.solid.xr, self.tc, return_cons=True) F_y, U_y = riemann.riemann_flux(2, U_yl, U_yr, self.cc_data, self.rp, self.ivars, self.solid.yl, self.solid.yr, self.tc, return_cons=True) # Find primitive variable since we need pressure in conservative update. qx = cons_to_prim(U_x, gamma, self.ivars, myg) qy = cons_to_prim(U_y, gamma, self.ivars, myg) else: # Directly calculate the interface flux using Riemann Solver F_x = riemann.riemann_flux(1, U_xl, U_xr, self.cc_data, self.rp, self.ivars, self.solid.xl, self.solid.xr, self.tc, return_cons=False) F_y = riemann.riemann_flux(2, U_yl, U_yr, self.cc_data, self.rp, self.ivars, self.solid.yl, self.solid.yr, self.tc, return_cons=False) # Apply artificial viscosity to fluxes q = cons_to_prim(self.cc_data.data, gamma, self.ivars, myg) F_x, F_y = flx.apply_artificial_viscosity(F_x, F_y, q, self.cc_data, self.rp, self.ivars) # save the old state (without ghost cells) U_old = myg.scratch_array(nvar=self.ivars.nvar) U_old[:, :, self.ivars.idens] = dens[:, :] U_old[:, :, self.ivars.ixmom] = xmom[:, :] U_old[:, :, self.ivars.iymom] = ymom[:, :] U_old[:, :, self.ivars.iener] = ener[:, :] # Conservative update # Apply contribution due to fluxes dtdV = self.dt / myg.V.v() for n in range(self.ivars.nvar): var = self.cc_data.get_var_by_index(n) var.v()[:, :] += dtdV * \ (F_x.v(n=n)*myg.Ax.v() - F_x.ip(1, n=n)*myg.Ax.ip(1) + F_y.v(n=n)*myg.Ay.v() - F_y.jp(1, n=n)*myg.Ay.jp(1)) # Now apply external sources # For SphericalPolar (coord_type == 1) there are pressure # gradients since we don't include pressure in xmom and ymom # fluxes if myg.coord_type == 1: xmom.v()[:, :] -= self.dt * (qx.ip(1, n=self.ivars.ip) - qx.v(n=self.ivars.ip)) / myg.Lx.v() ymom.v()[:, :] -= self.dt * (qy.jp(1, n=self.ivars.ip) - qy.v(n=self.ivars.ip)) / myg.Ly.v() # now the external sources (including gravity). We are going # to do a predictor-corrector here: # # * compute old sources using old state: S^n = S(U^n) # * update state full dt using old sources: U^{n+1,*} += dt * S^n # * compute new sources using this updated state: S^{n+1) = S(U^{n+1,*}) # * correct: U^{n+1} = U^{n+1,*} + dt/2 (S^{n+1} - S^n) S_old = get_external_sources(self.cc_data.t, self.dt, U_old, self.ivars, self.rp, myg, problem_source=self.problem_source) for n in range(self.ivars.nvar): var = self.cc_data.get_var_by_index(n) var.v()[:, :] += self.dt * S_old.v(n=n) # now get the new time source S_new = get_external_sources(self.cc_data.t, self.dt, self.cc_data.data, self.ivars, self.rp, myg, U_old=U_old, problem_source=self.problem_source) # and correct for n in range(self.ivars.nvar): var = self.cc_data.get_var_by_index(n) var.v()[:, :] += 0.5 * self.dt * (S_new.v(n=n) - S_old.v(n=n)) if self.particles is not None: self.particles.update_particles(self.dt) # increment the time self.cc_data.t += self.dt self.n += 1 tm_evolve.end()
[docs] def dovis(self): """ Do runtime visualization. """ plt.clf() plt.rc("font", size=10) # we do this even though ivars is in self, so this works when # we are plotting from a file ivars = Variables(self.cc_data) # access gamma from the cc_data object so we can use dovis # outside of a running simulation. gamma = self.cc_data.get_aux("gamma") q = cons_to_prim(self.cc_data.data, gamma, ivars, self.cc_data.grid) rho = q[:, :, ivars.irho] u = q[:, :, ivars.iu] v = q[:, :, ivars.iv] p = q[:, :, ivars.ip] e = eos.rhoe(gamma, p)/rho magvel = np.sqrt(u**2 + v**2) myg = self.cc_data.grid fields = [rho, magvel, p, e] field_names = [r"$\rho$", r"U", "p", "e"] x = myg.scratch_array() y = myg.scratch_array() if myg.coord_type == 1: x.v()[:, :] = myg.x2d.v()[:, :]*np.sin(myg.y2d.v()[:, :]) y.v()[:, :] = myg.x2d.v()[:, :]*np.cos(myg.y2d.v()[:, :]) else: x.v()[:, :] = myg.x2d.v()[:, :] y.v()[:, :] = myg.y2d.v()[:, :] _, axes, cbar_title = plot_tools.setup_axes(myg, len(fields)) for n, ax in enumerate(axes): v = fields[n] img = ax.pcolormesh(x.v(), y.v(), v.v(), shading="nearest", cmap=self.cm) ax.set_xlabel("x") ax.set_ylabel("y") # needed for PDF rendering cb = axes.cbar_axes[n].colorbar(img) cb.solids.set_rasterized(True) cb.solids.set_edgecolor("face") if cbar_title: cb.ax.set_title(field_names[n]) else: ax.set_title(field_names[n]) if self.particles is not None: ax = axes[0] particle_positions = self.particles.get_positions() # dye particles colors = self.particles.get_init_positions()[:, 0] # plot particles ax.scatter(particle_positions[:, 0], particle_positions[:, 1], s=5, c=colors, alpha=0.8, cmap="Greys") if myg.coord_type == 1: ax.set_xlim([np.min(x), np.max(x)]) ax.set_ylim([np.min(y), np.max(y)]) else: ax.set_xlim([myg.xmin, myg.xmax]) ax.set_ylim([myg.ymin, myg.ymax]) plt.figtext(0.05, 0.0125, f"t = {self.cc_data.t:10.5g}") plt.pause(0.001) plt.draw()
[docs] def write_extras(self, f): """ Output simulation-specific data to the h5py file f """ # make note of the custom BC gb = f.create_group("BC") # the value here is the value of "is_solid" gb.create_dataset("hse", data=False) gb.create_dataset("ambient", data=False)