Source code for pyro.compressible.problems.ramp

"""A shock hitting a ramp at an oblique angle.  This is based on
Woodward & Colella 1984."""

import math

import numpy as np

from pyro.util import msg

DEFAULT_INPUTS = "inputs.ramp"

# these defaults comes from the third test problem in
# Woodward and Colella. Journal of Computational Physics, 54, 115-174, 1984
#
# Also, the numbers are consistent with the ones in Castro

PROBLEM_PARAMS = {"ramp.rhol": 8.0,  # post-shock initial density
                  "ramp.ul": 7.1447096,  # post-shock initial x-velocity
                  "ramp.vl": -4.125,  # post-shock initial y-velocity
                  "ramp.pl": 116.5,  # post-shock initial pressure
                  "ramp.rhor": 1.4,  # pre-shock initial density
                  "ramp.ur": 0.0,  # pre-shock initial x-velocity
                  "ramp.vr": 0.0,  # pre-shock initial y-velocity
                  "ramp.pr": 1.0}  # pre-shock initial pressure


[docs] def init_data(my_data, rp): """ initialize the double Mach reflection problem """ if rp.get_param("driver.verbose"): msg.bold("initializing the double Mach reflection problem...") # get the density, momenta, and energy as separate variables dens = my_data.get_var("density") xmom = my_data.get_var("x-momentum") ymom = my_data.get_var("y-momentum") ener = my_data.get_var("energy") # initialize the components, remember, that ener here is # rho*eint + 0.5*rho*v**2, where eint is the specific # internal energy (erg/g) r_l = rp.get_param("ramp.rhol") u_l = rp.get_param("ramp.ul") v_l = rp.get_param("ramp.vl") p_l = rp.get_param("ramp.pl") r_r = rp.get_param("ramp.rhor") u_r = rp.get_param("ramp.ur") v_r = rp.get_param("ramp.vr") p_r = rp.get_param("ramp.pr") gamma = rp.get_param("eos.gamma") energy_l = p_l/(gamma - 1.0) + 0.5*r_l*(u_l*u_l + v_l*v_l) energy_r = p_r/(gamma - 1.0) + 0.5*r_r*(u_r*u_r + v_r*v_r) # there is probably an easier way to do this, but for now, we # will just do an explicit loop. Also, we really want to set # the pressure and get the internal energy from that, and then # compute the total energy (which is what we store). For now # we will just fake this myg = my_data.grid dens[:, :] = 1.4 for j in range(myg.jlo, myg.jhi+1): cy_up = myg.y[j] + 0.5*myg.dy*math.sqrt(3) cy_down = myg.y[j] - 0.5*myg.dy*math.sqrt(3) cy = np.array([cy_down, cy_up]) for i in range(myg.ilo, myg.ihi+1): dens[i, j] = 0.0 xmom[i, j] = 0.0 ymom[i, j] = 0.0 ener[i, j] = 0.0 sf_up = math.tan(math.pi/3.0)*(myg.x[i] + 0.5*myg.dx*math.sqrt(3)-1.0/6.0) sf_down = math.tan(math.pi/3.0)*(myg.x[i] - 0.5*myg.dx*math.sqrt(3)-1.0/6.0) sf = np.array([sf_down, sf_up]) # initial shock front for y in cy: for shockfront in sf: if y >= shockfront: dens[i, j] = dens[i, j] + 0.25*r_l xmom[i, j] = xmom[i, j] + 0.25*r_l*u_l ymom[i, j] = ymom[i, j] + 0.25*r_l*v_l ener[i, j] = ener[i, j] + 0.25*energy_l else: dens[i, j] = dens[i, j] + 0.25*r_r xmom[i, j] = xmom[i, j] + 0.25*r_r*u_r ymom[i, j] = ymom[i, j] + 0.25*r_r*v_r ener[i, j] = ener[i, j] + 0.25*energy_r
[docs] def finalize(): """ print out any information to the user at the end of the run """