import pyro.mesh.array_indexer as ai
from pyro.mesh import fourth_order
[docs]
def fluxes(my_data, rp):
r"""Construct the fluxes through the interfaces for the linear advection
equation:
.. math::
a_t + u a_x + v a_y = 0
We use a fourth-order Godunov method to construct the interface
states, using Runge-Kutta integration. Since this is 4th-order,
we need to be aware of the difference between a face-average and
face-center for the fluxes.
In the pure advection case, there is no Riemann problem we need to
solve -- we just simply do upwinding. So there is only one 'state'
at each interface, and the zone the information comes from depends
on the sign of the velocity.
Our convection is that the fluxes are going to be defined on the
left edge of the computational zones::
| | | |
| | | |
-+------+------+------+------+------+------+--
| i-1 | i | i+1 |
a_l,i a_r,i a_l,i+1
a_r,i and a_l,i+1 are computed using the information in
zone i,j.
Parameters
----------
my_data : FV object
The data object containing the grid and advective scalar that
we are advecting.
rp : RuntimeParameters object
The runtime parameters for the simulation
Returns
-------
out : ndarray, ndarray
The fluxes averaged over the x and y faces
"""
myg = my_data.grid
a = my_data.get_var("density")
# get the advection velocities
u = rp.get_param("advection.u")
v = rp.get_param("advection.v")
limiter = rp.get_param("advection.limiter")
# interpolate cell-average a to face-averaged a on interfaces in each
# dimension -- this is MC Eq. 17
if limiter == 0:
# no limiting
a_x = myg.scratch_array()
a_x.v(buf=1)[:, :] = 7./12.*(a.ip(-1, buf=1) + a.v(buf=1)) - \
1./12.*(a.ip(-2, buf=1) + a.ip(1, buf=1))
a_y = myg.scratch_array()
a_y.v(buf=1)[:, :] = 7./12.*(a.jp(-1, buf=1) + a.v(buf=1)) - \
1./12.*(a.jp(-2, buf=1) + a.jp(1, buf=1))
else:
a_l, a_r = fourth_order.states(a, myg.ng, 1)
if u > 0:
a_x = ai.ArrayIndexer(d=a_l, grid=myg)
else:
a_x = ai.ArrayIndexer(d=a_r, grid=myg)
a_l, a_r = fourth_order.states(a, myg.ng, 2)
if v > 0:
a_y = ai.ArrayIndexer(d=a_l, grid=myg)
else:
a_y = ai.ArrayIndexer(d=a_r, grid=myg)
# calculate the face-centered value a using the transverse Laplacian
# this is MC Eq. 18, 19
a_x_cc = myg.scratch_array()
bufx = (0, 1, 0, 0)
a_x_cc.v(buf=bufx)[:, :] = a_x.v(buf=bufx) - \
1./24*(a_x.jp(-1, buf=bufx) - 2*a_x.v(buf=bufx) + a_x.jp(1, buf=bufx))
a_y_cc = myg.scratch_array()
bufy = (0, 0, 0, 1)
a_y_cc.v(buf=bufy)[:, :] = a_y.v(buf=bufy) - \
1./24*(a_y.ip(-1, buf=bufy) - 2*a_y.v(buf=bufy) + a_y.ip(1, buf=bufy))
# compute the face-averaged fluxes -- this is MC Eq. 20
F_x = myg.scratch_array()
F_x_avg = u*a_x
F_x.v(buf=bufx)[:, :] = u*a_x_cc.v(buf=bufx) + \
1./24*(F_x_avg.jp(-1, buf=bufx) - 2*F_x_avg.v(buf=bufx) + F_x_avg.jp(1, buf=bufx))
F_y = myg.scratch_array()
F_y_avg = v*a_y
F_y.v(buf=bufy)[:, :] = v*a_y_cc.v(buf=bufy) + \
1./24*(F_y_avg.ip(-1, buf=bufy) - 2*F_y_avg.v(buf=bufy) + F_y_avg.ip(1, buf=bufy))
return F_x, F_y