Source code for pyro.advection_fv4.fluxes

import pyro.mesh.array_indexer as ai
from pyro.mesh import fourth_order


[docs] def fluxes(my_data, rp): r"""Construct the fluxes through the interfaces for the linear advection equation: .. math:: a_t + u a_x + v a_y = 0 We use a fourth-order Godunov method to construct the interface states, using Runge-Kutta integration. Since this is 4th-order, we need to be aware of the difference between a face-average and face-center for the fluxes. In the pure advection case, there is no Riemann problem we need to solve -- we just simply do upwinding. So there is only one 'state' at each interface, and the zone the information comes from depends on the sign of the velocity. Our convection is that the fluxes are going to be defined on the left edge of the computational zones:: | | | | | | | | -+------+------+------+------+------+------+-- | i-1 | i | i+1 | a_l,i a_r,i a_l,i+1 a_r,i and a_l,i+1 are computed using the information in zone i,j. Parameters ---------- my_data : FV object The data object containing the grid and advective scalar that we are advecting. rp : RuntimeParameters object The runtime parameters for the simulation Returns ------- out : ndarray, ndarray The fluxes averaged over the x and y faces """ myg = my_data.grid a = my_data.get_var("density") # get the advection velocities u = rp.get_param("advection.u") v = rp.get_param("advection.v") limiter = rp.get_param("advection.limiter") # interpolate cell-average a to face-averaged a on interfaces in each # dimension -- this is MC Eq. 17 if limiter == 0: # no limiting a_x = myg.scratch_array() a_x.v(buf=1)[:, :] = 7./12.*(a.ip(-1, buf=1) + a.v(buf=1)) - \ 1./12.*(a.ip(-2, buf=1) + a.ip(1, buf=1)) a_y = myg.scratch_array() a_y.v(buf=1)[:, :] = 7./12.*(a.jp(-1, buf=1) + a.v(buf=1)) - \ 1./12.*(a.jp(-2, buf=1) + a.jp(1, buf=1)) else: a_l, a_r = fourth_order.states(a, myg.ng, 1) if u > 0: a_x = ai.ArrayIndexer(d=a_l, grid=myg) else: a_x = ai.ArrayIndexer(d=a_r, grid=myg) a_l, a_r = fourth_order.states(a, myg.ng, 2) if v > 0: a_y = ai.ArrayIndexer(d=a_l, grid=myg) else: a_y = ai.ArrayIndexer(d=a_r, grid=myg) # calculate the face-centered value a using the transverse Laplacian # this is MC Eq. 18, 19 a_x_cc = myg.scratch_array() bufx = (0, 1, 0, 0) a_x_cc.v(buf=bufx)[:, :] = a_x.v(buf=bufx) - \ 1./24*(a_x.jp(-1, buf=bufx) - 2*a_x.v(buf=bufx) + a_x.jp(1, buf=bufx)) a_y_cc = myg.scratch_array() bufy = (0, 0, 0, 1) a_y_cc.v(buf=bufy)[:, :] = a_y.v(buf=bufy) - \ 1./24*(a_y.ip(-1, buf=bufy) - 2*a_y.v(buf=bufy) + a_y.ip(1, buf=bufy)) # compute the face-averaged fluxes -- this is MC Eq. 20 F_x = myg.scratch_array() F_x_avg = u*a_x F_x.v(buf=bufx)[:, :] = u*a_x_cc.v(buf=bufx) + \ 1./24*(F_x_avg.jp(-1, buf=bufx) - 2*F_x_avg.v(buf=bufx) + F_x_avg.jp(1, buf=bufx)) F_y = myg.scratch_array() F_y_avg = v*a_y F_y.v(buf=bufy)[:, :] = v*a_y_cc.v(buf=bufy) + \ 1./24*(F_y_avg.ip(-1, buf=bufy) - 2*F_y_avg.v(buf=bufy) + F_y_avg.ip(1, buf=bufy)) return F_x, F_y