lm_atm package¶
The pyro solver for low Mach number atmospheric flow. This implements as second-order approximate projection method. The general flow is:
- create the limited slopes of rho, u and v (in both directions)
- get the advective velocities through a piecewise linear Godunov method
- enforce the divergence constraint on the velocities through a projection (the MAC projection)
- predict rho to edges and do the conservative update
- recompute the interface states using the new advective velocity
- update U in time to get the provisional velocity field
- project the final velocity to enforce the divergence constraint.
The projections are done using multigrid
Submodules¶
lm_atm.simulation module¶
-
class
lm_atm.simulation.Simulation(solver_name, problem_name, rp, timers=None)[source]¶ Bases:
simulation_null.NullSimulation-
initialize()[source]¶ Initialize the grid and variables for low Mach atmospheric flow and set the initial conditions for the chosen problem.
-
method_compute_timestep()[source]¶ The timestep() function computes the advective timestep (CFL) constraint. The CFL constraint says that information cannot propagate further than one zone per timestep.
We use the driver.cfl parameter to control what fraction of the CFL step we actually take.
-